Method Consideration of Variation Diagnosis and Design Value Calculation of Flood Sequence in Yiluo River Basin, China

Author:

Li Xinxin,Ma Xixia,Li Xiaodong,Zhang Wenjiang

Abstract

The conventional approaches of the design flood calculation are based on the assumption that the hydrological time series is subject to the same distribution in the past, present, and future, i.e., the series should be consistent. However, the traditional methods may result in overdesign in the water conservancy project since the series has non-stationary variations due to climate change and human activities. Therefore, it is necessary to develop a new approach for frequency estimation of non-stationary time series of extreme values. This study used four kinds of mutation test methods (the linear trend correlation coefficient, Mann–Kendall test, sliding t-test, and Pettitt test) to identify the trend and mutation of the annual maximum flow series (1950–2006) of three hydrological stations in the Yiluo River Basin. Then we evaluated the performance of two types of design flood methods (the time series decomposition-synthesis method, the mixed distribution model) under the impacts of climate change and human activities on hydro-meteorological conditions. The results showed that (a) the design flood value obtained by the time series decomposition-synthesis method based on the series of the backward restore is larger than that obtained by the decomposition synthesis method based on the series of the forward restore; (b) when the return period is 100 years or less, the design flood value obtained by the mixed distribution model using the capacity ratio parameter estimation method is less than that obtained by the hybrid distribution model with simulated annealing parameter estimation method; and (c) both methods can overcome sequence inconsistency in design frequencies. This study provides insight into the frequency estimation of non-stationary time series of extreme values under the impacts of climate change and human activities on hydro-meteorological conditions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference53 articles.

1. Research progress and evaluation of design flood calculation method;Guo;J. Water Conserv.,2016

2. On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment;Mulvaney;Proc. Inst. Civ. Eng. Irel.,1851

3. The relation between the rainfall and the discharge of sewers in populous areas;Kuichling;Trans. Am. Soc. Civ. Eng.,1889

4. Applied Hydrology;Chow,1988

5. Return Period Adjustment for Runoff Coefficients Based on Analysis in Undeveloped Texas Watersheds

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3