Improved Cyanobacteria Removal from Harmful Algae Blooms by Two-Cycle, Low-Frequency, Low-Density, and Short-Duration Ultrasonic Radiation

Author:

Huang HaocaiORCID,Wu Gang,Sheng Chaowu,Wu Jiannan,Li Danhua,Wang HangzhouORCID

Abstract

Harmful algae blooms (HAB) in eutrophic lakes and rivers have become serious water quality problems that are difficult to eliminate using common methods. Previous research has demonstrated that powerful ultrasound can somewhat control cyanobacteria in HABs; however, effective and energy-efficient settings for ultrasonic parameters have not yet been rigorously determined. The results of this study showed that the effect of cyanobacteria removal was enhanced with ultrasonic frequencies, densities, and radiation durations of 20–90 kHz, 0.0005–0.1 W/mL and 0.5–10 min, respectively. Our analyses further demonstrated that the effective distance of ultrasound decreased with increasing frequency, and that damaged algae cells were able to repair themselves at low ultrasonic densities. To address the high energy consumption and small effective distance of conventional ultrasonic radiation treatments, we proposed a new cyanobacteria removal method based on two applications of low-frequency, low-density and short-duration ultrasonic radiation. We defined the energy effectiveness factors of ultrasonic radiation for algae removal as the algae removal rate divided by ultrasonic dosage. This method yielded an 87.6% cyanobacteria removal and the highest energy effectiveness factor, suggesting that two cycles of treatment provide a low-energy method for enhancing existing algae-removing technologies used in large bodies of water.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3