Steering the Metal Precursor Location in Pd/Zeotype Catalysts and Its Implications for Catalysis

Author:

Smulders Luc C. J.1ORCID,van de Minkelis Johan H.1ORCID,Meeldijk Johannes D.1,Tang Min1,Liutkova Anna2,Cheng Kang1,Roberts S. Tegan3,Sunley Glenn J.3ORCID,Hensen Emiel J. M.2ORCID,de Jongh Petra E.1,de Jong Krijn P.1

Affiliation:

1. Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands

2. Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3. Applied Sciences, bp Innovation & Engineering, BP plc, Saltend, Hull HU12 8DS, UK

Abstract

Bifunctional catalysts containing a dehydrogenation–hydrogenation function and an acidic function are widely applied for the hydroconversion of hydrocarbon feedstocks obtained from both fossil and renewable resources. It is well known that the distance between the two functionalities is important for the performance of the catalyst. In this study, we show that the heat treatment of the catalyst precursor can be used to steer the location of the Pd precursor with respect to the acid sites in SAPO-11 and ZSM-22 zeotype materials when ions are exchanged with Pd(NH3)4(NO3)2. Two sets of catalysts were prepared based on composite materials of alumina with either SAPO-11 or ZSM-22. Pd was placed on/in the zeotype, followed by a calcination-reduction (CR) or direct reduction (DR) treatment. Furthermore, catalysts with Pd on the alumina binder were prepared. CR results in having more Pd nanoparticles inside the zeotype crystals, whereas DR yields more particles on the outer surface of the zeotype crystals as is confirmed using HAADF-STEM and XPS measurements. The catalytic performance in both n-heptane and n-hexadecane hydroconversion of the catalysts shows that having the Pd nanoparticles on the alumina binder is most beneficial for maximizing the isomer yields. Pd-on-zeotype catalysts prepared using the DR approach show intermediate performances, outperforming their Pd-in-zeotype counterparts that were prepared with the CR approach.

Funder

BP plc

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3