Studies on the Inhibition of Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) by 2-(3,4-Dihydroxyphenyl)-7,8-dihydroxy-3-methoxychromen-4-one, a Flavonoid from Pistacia chinensis

Author:

Rauf Abdur1ORCID,Akram Zuneera2,Naveed Muhammad3,AlMasoud Najla4ORCID,Alomar Taghrid S.4ORCID,Saleem Muhammad5,Waheed Abdul6,Ribaudo Giovanni7ORCID

Affiliation:

1. Department of Chemistry, University of Swabi, Swabi 23561, Khyber Pakhtunkhwa, Pakistan

2. Department of Pharmacology, Faculty of Pharmaceutical Sciences, Baqai Medical University, Karachi 75340, Sindh, Pakistan

3. Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan

4. Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Department of Chemistry, Ghazi University, Dear Ghazi Khan 32201, Punjab, Pakistan

6. Department of Psychiatry, Hamad General Hospital, Doha P.O. Box 3050, Qatar

7. Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy

Abstract

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) regulates skeletal and soft tissue mineralization by hydrolyzing nucleotide triphosphates and cyclic nucleotides, and is involved in the modulation of immune system. In fact, ENPP1 degrades 2′,3′-cyclic GMP-AMP dinucleotide (2′,3′-cGAMP), which is an agonist of surface receptor stimulator of interferon genes (STING), thus downregulating immune response. Consequently, ENPP1 inhibitors are being studied as adjuvant agents in infections and cancer. Pistacia chinensis is a medicinal plant endowed with several biological activities and traditional uses. In the current study, we report the isolation of transilitin (2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxychromen-4-one) from the methanolic extract of P. chinensis barks and the investigation of its activity as ENPP1 inhibitor. The compound was tested in vitro against snake venom phosphodiesterase, which is structurally related to ENPP1, and dose-dependently inhibited the enzyme. Moreover, molecular modeling studies were employed to assess the binding motif of the transilitin with the macromolecular target. Our findings support the traditional medical application of P. chinensis and its extracts by shedding new light on the mechanisms underlying their biological action.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3