Environmental Applications of Zeolites: Preparation and Screening of Cu-Modified Zeolites as Potential CO Sensors

Author:

Jendrlin Martin1ORCID,Grand Julien2,Lakiss Louwanda2ORCID,Bazin Philippe2,Mintova Svetlana2,Zholobenko Vladimir1

Affiliation:

1. School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK

2. Laboratoire Catalyse et Spectrochimie, ENSICAEN, CNRS, Normandie Université, 6 Bd Maréchal Juin, 14000 Caen, France

Abstract

This work is focused on the application of Cu-containing zeolites as potential environmental sensors for monitoring carbon monoxide. A number of commercial zeolites with different structural properties (NaX, NaY, MOR, FER, BEA and ZSM-5) were modified using CuSO4, Cu(NO3)2 and Cu(OAc)2 solutions as copper sources to prepare Cu+-containing zeolites, since Cu+ forms stable complexes with CO at room temperature that can be monitored by infrared spectroscopy. Zeolite impregnation with Cu(NO3)2 resulted in the highest total Cu-loadings, while the Cu(OAc)2-treated samples had the highest Cu+/Cutotal ratio. Cu(NO3)2-impregnated MOR, which displayed the highest concentration of Cu+, was subjected to a number of tests to evaluate its performance as a potential CO sensor. The working temperature and concentration ranges of the sensor were determined to be from 20 to 300 °C and from 10 to 10,000 ppm, respectively. The stepwise CO desorption experiments indicated that the sensor can be regenerated at 400 °C if required. Additional analyses under realistic flow conditions demonstrated that for hydrophilic zeolites, the co-adsorption of water can compromise the sensor’s performance. Therefore, a hydrophobic Sn-BEA was utilised as a parent material for the preparation of an impregnated Cu-Sn-BEA zeolite, which exhibited superior resistance to interfering water while maintaining its sensing properties. Overall, the prepared Cu-modified zeolites showed promising potential as environmental CO sensors, displaying high sensitivity and selectivity under representative testing conditions.

Funder

Royal Society

Keele University

Newton Fund

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3