MgAl-NO3 LDH: Adsorption Isotherms and Multivariate Optimization for Cr(VI) Removal

Author:

Cardinale Anna Maria1ORCID,Carbone Cristina2ORCID,Molinari Simone3ORCID,Salviulo Gabriella3,Ardini Francisco1ORCID

Affiliation:

1. Department of Chemistry and Industrial Chemistry (DCCI), University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy

2. Department for the Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy

3. Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padova, Italy

Abstract

Within the framework of the various strategies studied for the abatement of polluting agents in water, both from anthropogenic and natural origins, adsorption processes are among the most widespread techniques. In this context, Layered Double Hydroxides (LDHs) play a fundamental role. In this study, a Mg–Al LDH (nitrate intercalated, Mg/Al = 2) was prepared to be used as an anion exchanger for Cr(VI)-removal purposes from water. The LDH was synthesized through a coprecipitation reaction, followed by an aging process under heating. The compound was characterized by means of inductively coupled plasma–atomic emission spectroscopy (ICP-AES), X-ray powder diffraction (XRPD), field-emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared spectroscopy (FT-IR). Regarding LDH adsorption capacity, with respect to Cr(VI), the adsorption isotherms and reaction kinetic were studied, and the adsorption process was well described by the Langmuir model. A central composite design was used for the multivariate optimization of the working parameters. The maximum adsorption capacity was estimated to be 30 mg/g.

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3