Abstract
Using cobalt(II) as a metal centre with different solvent systems afforded the crystallization of isomorphous metal-organic frameworks {[Co(34pba)(44pba)]·DMF}n (1) and {[Co(34pba)(44pba)]·(C3H6O)}n (2) from mixed 4-(4-pyridyl)benzoate (44pba) and 3-(4-pyridyl)benzoate (34pba) ligands. Zinc(II) under the same reaction conditions that led to the formation of 1 formed an isostructural {[Zn(34pba)(44pba)]·DMF}n framework (3). Crystal structures of all three MOFs were elucidated and their thermal stabilities were determined. The frameworks of 1, 2, and 3 were activated under vacuum to form the desolvated forms 1d, 2d, and 3d, respectively. PXRD results showed that 1d and 2d were identical, consequently, 1d and 3d were then investigated for sorption of volatile organic compounds (VOCs) containing either chloro or amine moieties. Thermogravimetric analysis (TGA) and nuclear magnetic resonance (NMR) were used to determine the sorption capacity and selectivity for the VOCs. Some sorption products of 1d with amines became amorphous, but the crystalline framework could be recovered on desorption of the amines. Investigation of the sorption of water (H2O) and ammonia (NH3) in 1d gave rise to new phases identifiable by means of a colour change (solvatochromism). The kinetics of desorption of DMF, water and ammonia from frameworks 1d and 3d were studied using non-isothermal TGA. Activation energies for both cobalt(II) and zinc(II) frameworks are in the order NH3 < H2O < DMF, with values for the 1d analogue always higher than those for 3d.
Funder
National Research Foundation of South Africa
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献