Synthetic and Structural Chemistry of Uranyl-Amidoxime Complexes: Technological Implications

Author:

Tsantis Sokratis T.1ORCID,Iliopoulou Maria1,Tzimopoulos Demetrios I.2,Perlepes Spyros P.1

Affiliation:

1. Department of Chemistry, University of Patras, 26504 Patras, Greece

2. Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Resource shortage is a major problem in our world. Nuclear energy is a green energy and because of this and its high energy density, it has been attracting more and more attention during the last few decades. Uranium is a valuable nuclear fuel used in the majority of nuclear power plants. More than one thousand times more uranium exists in the oceans, at very low concentrations, than is present in terrestrial ores. As the demand for nuclear power generation increases year-on-year, access to this reserve is of paramount importance for energy security. Water-insoluble polymeric materials functionalized with the amidoxime group are a technically feasible platform for extracting uranium, in the form of {UO2}2+, from seawater, which also contains various concentrations of other competing metal ions, including vanadium (V). An in-depth understanding of the coordination modes and binding strength of the amidoxime group with uranyl and other competing ions is a key parameter for improving extraction efficiency and selectivity. Very limited information on the complexation of {UO2}2+ with amidoximes was available before 2012. However, significant advances have been made during the last decade. This report reviews the solid-state coordination chemistry of the amidoxime group (alone or within ligands with other potential donor sites) with the uranyl ion, while sporadic attention on solution and theoretical studies is also given. Comparative studies with vanadium complexation are also briefly described. Eight different coordination modes of the neutral and singly deprotonated amidoxime groups have been identified in the structures of the uranyl complexes. Particular emphasis is given to describing the reactivity of the open-chain glutardiamidoxime, closed-ring glutarimidedioxime and closed-ring glutarimidoxioxime moieties, which are present as side chains on the sorbents, towards the uranyl moiety. The technological implications of some of the observed coordination modes are outlined. It is believed that X-ray crystallography of small uranyl-amidoxime molecules may help to build an understanding of the interactions of seawater uranyl with amidoxime-functionalized polymers and improve their recovery capacity and selectivity, leading to more efficient extractants. The challenges for scientists working on the structural elucidation of uranyl coordination complexes are also outlined. The review contains six sections and 95 references.

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3