Tris(3-nitropentane-2,4-dionato-κ2 O,O′) Complexes as a New Type of Highly Energetic Materials: Theoretical and Experimental Considerations

Author:

Kretić Danijela S.1,Veljković Ivana S.2ORCID,Veljković Dušan Ž.1ORCID

Affiliation:

1. University of Belgrade—Faculty of Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia

2. University of Belgrade—Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia

Abstract

Decreasing the sensitivity towards detonation of high-energy materials (HEMs) is the ultimate goal of numerous theoretical and experimental studies. It is known that positive electrostatic potential above the central areas of the molecular surface is related to high sensitivity towards the detonation of high-energy molecules. Coordination compounds offer additional structural features that can be used for the adjustment of the electrostatic potential values and sensitivity towards detonation of this class of HEM compounds. By a careful combination of the transition metal atoms and ligands, it is possible to achieve a fine-tuning of the values of the electrostatic potential on the surface of the chelate complexes. Here we combined Density Functional Theory calculations with experimental data to evaluate the high-energy properties of tris(3-nitropentane-2,4-dionato-κ2 O,O′) (nitro-tris(acetylacetonato)) complexes of Cr(III), Mn(III), Fe(III), and Co(III). Analysis of the Bond Dissociation Energies (BDE) of the C-NO2 bonds and Molecular Electrostatic Potentials (MEP) showed that these compounds may act as HEM molecules. Analysis of IR spectra and initiation of the Co(AcAc-NO2)3 complex in the open flame confirmed that these compounds act as high-energy molecules. The measured heat of combustion for the Co(AcAc-NO2)3 complex was 14,133 J/g, which confirms the high-energy properties of this compound. The results also indicated that the addition of chelate rings may be used as a new tool for controlling the sensitivity towards the detonation of high-energy coordination compounds.

Funder

Science Fund of the Republic of Serbia, PROMIS

Serbian Ministry of Science, Technological Development, and Innovation of Republic of Serbia

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3