Abstract
Bulk heterojunction organic solar cells (BHJs) are competitive within the emerging photovoltaic technologies for solar energy conversion because of their unique advantages. Their development has been boosted recently by the introduction of nonfullerene electron acceptors (NFAs), to be used in combination with a polymeric electron donor in the active layer composition. Many of the recent advances in NFAs are attributable to the class of fused-ring electron acceptors (FREAs), which is now predominant, with one of the most notable examples being formed with a fused five-member-ring indaceno[1,2-b:5,6-b′]dithiophene (IDT) core. Here, we propose a novel and more sustainable synthesis for the IDT core. Our approach bypasses tin derivatives needed in the Stille condensation, whose byproducts are toxic and difficult to dispose of, and it makes use of cascade reactions, effectively reducing the number of synthetic steps.
Funder
Eni
Ministry of Education, Universities and Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献