Structural and Magnetic Analysis of a Family of Structurally Related Iron(III)-Oxo Clusters of Metal Nuclearity Fe8, Fe12Ca4, and Fe12La4

Author:

Singh Alok P.1,Brantley ChristiAnna L.1,Lee Kenneth Hong Kit1,Abboud Khalil A.1,Peralta Juan E.2,Christou George1

Affiliation:

1. Department of Chemistry, University of Florida, Gainesville, FL 32611, USA

2. Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859, USA

Abstract

The synthesis, crystal structure, and magnetic characterization are reported for three new structurally related iron(III) compounds (NHEt3)[Fe8O5(OH)5(O2PPh2)10] (1), [Fe12 Ca4O10(O2CPh)10(hmp)4] (2), and [Fe12La4O10(OH)4(tbb)24] (3), where hmpH is 2-(hydroxymethyl)pyridine and tbbH is 4-tBu-benzoic acid. 1 was obtained from the reaction of Fe(NO3)3·9H2O, diphenylphosphinic acid (Ph2PO2H), and NEt3 in a 1:4:16 molar ratio in MeCN at 50 °C; 2 was obtained from the reaction of [Fe3O(O2CPh)6(H2O)3](NO3), Ca(NO3)2, and NEt3 in a 1:1:4:2 ratio at 130 °C; and 3 was obtained from the reaction of Fe(NO3)3·9H2O, La(NO3)3·6H2O, 4-tBu-benzoic acid, and NEt3 in a 1:1:4:4 ratio in PhCN at 140 °C. The core of 1 consists of two {Fe4(µ3-O)2}8+ butterfly units stacked on top of each other and bridged by O2− and HO− ions. The cores of 2 and 3 also contain two stacked butterfly units, plus four additional Fe atoms, two at each end, and four M atoms (M = Ca2+ (2); La3+ (3)) on the sides. Variable-temperature (T) and solid-state dc and ac magnetization (M) data collected in the 1.8–300 K range revealed that 1 has an S = 0 ground state, 2 has a χMT value at low T consistent with the central Fe8 in a local S = 0 ground state and the two Fe3+ ions in each end-pair to be non-interacting, whereas 3 has a χMT value at low T consistent with these end-pairs each being ferromagnetically coupled with S = 5 ground states, plus intermolecular ferromagnetic interactions. These conclusions were reached from complementing the experimental studies with the calculation of the various Fe2 pairwise Jij exchange couplings by DFT computations and by using a magnetostructural correlation (MSC) for polynuclear Fe3+/O complexes, as well as a structural analysis of the intermolecular contacts in the crystal packing of 3.

Funder

U.S. National Science Foundation

Department of Energy, Office of Science, Office of Basic Energy Sciences, as part of the Computational Chemical Sciences Program

U.S. National Science Foundation for funding of the X-ray diffractometer at the University of Florida

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3