Operando NAP-XPS Studies of a Ceria-Supported Pd Catalyst for CO Oxidation

Author:

Garcia XèniaORCID,Soler LluísORCID,Vendrell XavierORCID,Serrano IsabelORCID,Herrera FacundoORCID,Prat Jordi,Solano EduardoORCID,Tallarida Massimo,Llorca JordiORCID,Escudero CarlosORCID

Abstract

Supported Pd/CeO2 catalytic systems have been widely investigated in the low-temperature oxidation of CO (LTO CO) due to the unique oxygen storage capacity and redox properties of the ceria support, which highly influence the structural, chemical and electronic state of Pd species. Herein, operando near-ambient pressure XPS (NAP-XPS) technique has allowed the study of a conventional Pd/CeO2 catalyst surface during the CO oxidation reaction under experimental conditions closer to the actual catalytic reaction, unfeasible with other surface science techniques that demand UHV conditions. SEM, HRTEM and XRD analyses of the powder catalyst, prepared by conventional incipient wetness impregnation, reveal uniformly CeO2-loaded Pd NPs of less than 2 nm size, which generated an increase in oxygen vacancies with concomitant ceria reduction, as indicated by H2-TPR and Raman measurements. Adsorbed peroxide (O22−) species on the catalyst surface could also be detected by Raman spectra. Operando NAP-XPS results obtained at the ALBA Synchrotron Light Source revealed two kinds of Pd species under reaction conditions, namely PdOx and PdII ions in a PdxCe1−xO2−δ solution, the latter one appearing to be crucial for the CO oxidation. By means of a non-destructive depth profile analysis using variable synchrotron excitation energies, the location and the role of these palladium species in the CO oxidation reaction could be clarified: PdOx was found to prevail on the upper surface layers of the metallic Pd supported NPs under CO, while under reaction mixture it was rapidly depleted from the surface, leaving a greater amount in the subsurface layers (7% vs. 12%, respectively). On the contrary, the PdxCe1−xO2−δ phase, which was created at the Pd–CeO2 interface in contact with the gas environment, appeared to be predominant on the surface of the catalyst. Its presence was crucial for CO oxidation evolution, acting as a route through which active oxygen species could be transferred from ceria to Pd species for CO oxidation.

Funder

Ministerio de Ciencia e Innovación

Severo Ochoa FUNFUTURE

Generalitat de Catalunya

MICINN Ramon y Cajal

Generalitat de Catalunya for Beatriu de Pinós

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3