Self-Assembled DNA Nanospheres: Design and Applications

Author:

Li Jing12,Liu Xiaojun3,Wang Jiaoli24,Jiang Qi1,Chen Minhui1,Zhang Wei1,Chen Yu2,Pu Ying5,Huang Jin2

Affiliation:

1. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

2. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China

3. College of Agricultural, Guangxi University, Nanning 530003, China

4. Key Laboratory for Ultra-Fast/Micro-Nano Technology and Advanced Laser Manufacturing of Hunan Province, School of Electrical Engineering, University of South China, Hengyang 421001, China

5. National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China

Abstract

Self-assembled DNA nanospheres, as versatile and ideal vehicles, have offered new opportunities to create intelligent delivery systems for precise bioimaging and cancer therapy, due to their good biostability and cell permeability, large loading capacity, and programmable self–assembly behaviors. DNA nanospheres can be synthesized by the self–assembly of Y–shaped DNA monomers, ultra–long single-stranded DNA (ssDNA), and even metal–DNA coordination. Interestingly, they are size–controllable by varying some parameters including concentration, reaction time, and mixing ratio. This review summarizes the design of DNA nanospheres and their extensive biomedical applications. First, the characteristics of DNA are briefly introduced, and different DNA nanostructures are mentioned. Then, the design of DNA nanospheres is emphasized and classified into three main categories, including Y–shaped DNA unit self-assembly by Watson–Crick base pairing, liquid crystallization and the dense packaging of ultra–long DNA strands generated via rolling circle amplification (RCA), and metal–DNA coordination–driven hybrids. Meanwhile, the advantages and disadvantages of different self–assembled DNA nanospheres are discussed, respectively. Next, the biomedical applications of DNA nanospheres are mainly focused on. Especially, DNA nanospheres serve as promising nanocarriers to deliver functional nucleic acids and drugs for biosensing, bioimaging, and therapeutics. Finally, the current challenges and perspectives for self-assembled DNA nanospheres in the future are provided.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

China Postdoctoral Science Foundation

Scientific Research Foundation for High-Level Talents of Yangzhou University

Green Yang Jinfeng Talent Program of Yangzhou

Key Research and Development Program of Hunan Province of China

Natural Science Foundation for Distinguished Young Scholars of Hunan Province

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3