Abstract
Dicyano-functionalized benzene and naphthalene anion derivatives exhibit a relatively rich population of electronically excited states in stark contrast to many assumptions regarding the photophysics of anions in general. The present work has quantum chemically analyzed the potential electronically excited states of closed-shell anions created by replacing hydrogen atoms with valence-bound lone pairs in benzene and naphthalene difunctionalized with combinations of -CN and -C2H. Dicyanobenzene anion derivatives can exhibit dipole-bound excited states as long as the cyano groups are not in para position to one another. This also extends to cyanoethynylbenzene anions as well as deprotonated dicyano- and cyanoethynylnaphthalene anion derivatives. Diethynyl functionalization is less consistent. While large dipole moments are created in some cases for deprotonation on the -C2H group itself, the presence of electronically excited states beyond those that are dipole-bound is less consistent. Beyond these general trends, 2-dicyanonaphthalene-34 gives strong indication for exhibiting a quadrupole-bound excited state, and the 1-cyanoethynylnaphthalene-29 and -36 anion derivatives are shown to possess as many as two valence-bound excited states and one dipole-bound excited state. These photophysical properties may have an influence on regions where polycyclic aromatic hydrocarbons are known to exist such as in various astrochemical environments or even in combustion flames.
Funder
National Aeronautics and Space Administration
National Science Foundation
University of Mississippi
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献