The (E, Z) Isomerization of C-methoxycarbonyl-N-aryl Chlorohydrazones

Author:

Molteni GiorgioORCID,Cargnoni Fausto,Soave RaffaellaORCID,Ponti AlessandroORCID

Abstract

Since chlorohydrazones are planar molecules, it is in principle possible to distinguish between their E and Z stereoisomers. Chlorohydrazones are known to preferentially assume the Z configuration around the C=N double bond, and their (E, Z) isomerization is almost suppressed at room temperature. The lack, or rather the difficulty, of such an isomerization has been conveniently addressed by the in-depth theoretical study of seven C-methoxycarbonyl-N-aryl chlorohydrazones (aryl = phenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl, 2-chlorophenyl, 2-bromophenyl, and 2-iodophenyl). DFT ωB97M-D4/cc-pVTZ calculations of these C-methoxycarbonyl-N-aryl chlorohydrazones, supported by the XRD determination of the molecular structure, provided a complete picture of the isomerization processes in the studied compounds. The analysis of the energetics, molecular geometry, and electronic structure (the latter in the framework of the Quantum Theory of Atoms In Molecules) showed that the Z isomers are thermodynamically favored because, within the low-energy planar isomers with extensive π conjugation, the electrostatic interactions between the dipoles of the C–O, C–Cl, and N–H bonds overcome the stabilization induced by the N–H ··· O bond present in the E isomers. We confirmed that the (E, Z) isomerization occurs by the umklapp mechanism, in which the –NHAr moiety rotates in the molecular plane towards a linear C=N–N configuration and then proceeds to the other isomer. The (E, Z) isomerization is very slow at room temperature because the umklapp interconversion has high barriers (≈110 kJ/mol) despite the extended π electron delocalization present in the transition state.

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3