Synthesis of Selenium-Based Small Molecules Inspired by CNS-Targeting Psychotropic Drugs and Mediators

Author:

Ribaudo Giovanni1ORCID,Zeppilli Davide2ORCID,Ongaro Alberto3,Bortoli Marco4ORCID,Zagotto Giuseppe3,Orian Laura2ORCID

Affiliation:

1. Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy

2. Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy

3. Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy

4. Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway

Abstract

Due to its endogenously high oxygen consumption, the central nervous system (CNS) is vulnerable to oxidative stress conditions. Notably, the activity of several CNS-targeting compounds, such as antidepressant and hypnotic drugs, or endogenous mediators, such as melatonin, is indeed linked to their ability of mitigating oxidative stress. In this work, we report the synthesis of two organoselenium compounds of which the structure was inspired by CNS-targeting psychotropic drugs (zolpidem and fluoxetine) and an endogenous mediator (melatonin). The molecules were designed with the aim of combining the ROS-scavenging properties, which were already assessed for the parent compounds, with a secondary antioxidant action, a glutathione peroxidase (GPx) mimic role empowered by the presence of selenium. The compounds were obtained through a facile three-step synthesis and were predicted by computational tools to passively permeate through the blood–brain barrier and to efficiently bind to the GABA A receptor, the macromolecular target of zolpidem. Of note, the designed synthetic pathway enables the production of several other derivatives through minor modifications of the scheme, paving the way for structure–activity relationship studies.

Funder

Università degli Studi di Brescia and Università

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3