Selective Recognition and Reversible “Turn-Off” Fluorescence Sensing of Acetate (CH3COO−) Anion at Ppb Level Using a Simple Quinizarin Fluorescent Dye

Author:

Noushija Mannanthara Kunhumon,Shanmughan AnanthuORCID,Mohan BindujaORCID,Shanmugaraju SankarasekaranORCID

Abstract

A simple and cost-effective optical sensing system based on quinizarin fluorescent dye (QZ) for the selective and reversible sensing of CH3COO− anions is reported. The anion binding affinity of QZ towards different anions was monitored using electronic absorption and fluorescence emission titration studies in DMSO. The UV-visible absorption spectrum of QZ showed a decrease in the intensity of the characteristic absorption peaks at λ = 280, 323, and 475 nm, while a new peak appeared at λ = 586 nm after the addition of CH3COO− anions. Similarly, the initial strong emission intensity of QZ was attenuated following titration with CH3COO− anions. Notably, similar titration using other anions, such as F−, Cl−, I−, NO3−, NO2−, and H2PO4-, caused no observable changes in both absorption and emission spectra. The selective sensing of CH3COO− anions was also reflected by a sharp visual color change from bright green to faint green under room light. Further, the binding was found to be reversible, and this makes QZ a potential optical and colorimetric sensor for selective, reversible, and ppb-level detection of CH3COO− anions in a DMSO medium.

Funder

Science and Engineering Research Board

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3