The Anion Impact on Dimensionality of Cadmium(II) Complexes with Nicotinamide

Author:

Soldin Željka1ORCID,Kukovec Boris-Marko2ORCID,Kovačić Milica3ORCID,Đaković Marijana1ORCID,Popović Zora1ORCID

Affiliation:

1. Division of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia

2. Department of Physical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia

3. Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10000 Zagreb, Croatia

Abstract

Three novel cadmium(II) coordination compounds, the dimeric [Cd(CH3COO)2(nia)2]2 (1), the polymeric {[Cd(nia)4](ClO4)2}n (2), and the monomeric [Cd(H2O)3(nia)3](ClO4)2·nia (3), were prepared in the reactions of the nicotinamide (pyridine-3-carboxamide, nia) with the corresponding cadmium(II) salts. All prepared compounds were characterized by elemental analyses, FT-IR spectroscopy, TGA/DTA, and single crystal X-ray analysis. The impact of anions (acetate, perchlorate) and solvent used on the dimensionality of cadmium(II) complexes and the cadmium(II) coordination environment was investigated. The bridging capabilities of acetate ions enabled the formation of dimers in the crystal structure of 1. It was shown that the dimensionality of perchlorate complexes depends on the solvent used. The coordination polymer 2 is isolated from an ethanol solution, while monomeric compound 3 was obtained by using a water/ethanol mixture as a solvent. The pentagonal-bipyramidal coordination of cadmium(II) was found in the presence of chelating and bridging acetate ions in 1. In the presence of non-coordinating perchlorate anions in 2 and 3, the coordination geometry of cadmium(II) is found to be octahedral. The supramolecular amide-amide homosynthon R22(8) was preserved in the hydrogen-bonded frameworks of all three compounds.

Funder

University of Zagreb, Zagreb, Croatia

Ministry of Science, Education and Sports of the Republic of Croatia

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3