Investigation of the Properties of Mo/ZSM-5 Catalysts Based on Zeolites with Microporous and Micro–Mesoporous Structures

Author:

Stepanov Andrey A.1ORCID,Korobitsyna Ludmila L.1,Vosmerikov Alexander V.1

Affiliation:

1. Institute of Petroleum Chemistry SB RAS, 634055 Tomsk, Russia

Abstract

The dehydroaromatization of methane (MDA) is of great interest as a promising process for processing natural and associated petroleum gases, the main component of which is methane. The rapid loss of catalyst activity because of coke formation hinders the introduction of the DHA methane process into the industry. Therefore, the aim of this research was to find ways to improve Mo/ZSM-5 catalysts for MDA. The paper presents the results of the synthesis of high-silica zeolites of the ZSM-5 type with microporous and micro–mesoporous structures, the preparation of Mo/ZSM-5 catalysts based on them, and the study of the physicochemical and catalytic properties of the obtained samples during the non-oxidative conversion of methane into aromatic hydrocarbons. Zeolite catalysts were investigated using IR spectroscopy, X-ray diffraction, TPD-NH3, SEM, HR-TEM, and N2 adsorption. It was found that the addition of carbon black in the stage of the synthesis of zeolite type ZSM-5 did not lead to structural changes, and the obtained samples had a crystallinity degree equal to 100%. The creation of the micro–mesoporous structure in Mo/ZSM-5 catalysts led to an increase in their activity and stability in the process of methane dehydroaromatization. The highest conversion of methane was observed on a 4.0%Mo/ZSM-5 catalyst prepared based on zeolite synthesized using 1.0% carbon black and was 13.0% after 20 min of reaction, while the benzene yield reached 7.0%. It was shown using HR-TEM that a more uniform distribution of the active metal component was observed in a zeolite catalyst with a micro–mesoporous structure than in a microporous zeolite.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3