Catalytic Reductive Amination of Aromatic Aldehydes on Co-Containing Composites

Author:

Subotin Vladyslav V.12ORCID,Asaula Vitalii M.2,Lishchenko Yulian L.12,Ivanytsya Mykyta O.12,Pariiska Olena O.2,Ryabukhin Sergey V.134ORCID,Volochnyuk Dmitriy M.134ORCID,Kolotilov Sergey V.23ORCID

Affiliation:

1. Enamine Ltd., Chervonotkatska Street 78, 02094 Kyiv, Ukraine

2. L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. 7 Nauky 31, 03028 Kyiv, Ukraine

3. Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine

4. Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, 02660 Kyiv, Ukraine

Abstract

The performance of a series of cobalt-based composites in catalytic amination of aromatic aldehydes by amines in the presence of hydrogen as well as hydrogenation of quinoline was studied. The composites were prepared by pyrolysis of CoII acetate, organic precursor (imidazole, 1,10-phenantroline, 1,2-diaminobenzene or melamine) deposited on aerosil (SiO2). These composites contained nanoparticles of metallic Co together with N-doped carboneous particles. Quantitative yields of the target amine in a reaction of p-methoxybenzaldehyde with n-butylamine were obtained at p(H2) = 150 bar, T = 150 °C for all composites. It was found that amination of p-methoxybenzaldehyde with n-butylamine and benzylamine at p(H2) = 100 bar, T = 100 °C led to the formation of the corresponding amines with the yields of 72–96%. In the case of diisopropylamine, amination did not occur, and p-methoxybenzyl alcohol was the sole or the major reaction product. Reaction of p-chlorobenzaldehyde with n-butylamine on the Co-containing composites at p(H2) = 100 bar, T = 100 °C resulted in the formation of N-butyl-N-p-chlorobenzylamine in 60–89% yields. Among the considered materials, the composite prepared by decomposition of CoII complex with 1,2-diaminobenzene on aerosil showed the highest yields of the target products and the best selectivity in all studied reactions.

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3