Initial Coupling and Reaction Progression of Directly Deposited Biradical Graphene Nanoribbon Monomers on Iodine-Passivated Versus Pristine Ag(111)

Author:

Galeotti GianlucaORCID,Fritton Massimo,Lischka Matthias,Obermann SebastianORCID,Ma Ji,Heckl Wolfgang M.,Feng Xinliang,Lackinger MarkusORCID

Abstract

The development of widely applicable methods for the synthesis of C-C-bonded nanostructures on inert and insulating surfaces is a challenging yet rewarding milestone in the field of on-surface synthesis. This would enable studies of nearly unperturbed covalent nanostructures with unique electronic properties as graphene nanoribbons (GNR) and π-conjugated 2D polymers. The prevalent Ullmann-type couplings are almost exclusively carried out on metal surfaces to lower the temperature required for initial dehalogenation well below the desorption threshold. To overcome the necessity for the activation of monomers on the target surface, we employ a recently developed Radical Deposition Source (RaDeS) for the direct deposition of radicals onto inert surfaces for subsequent coupling by addition reactions. The radicals are generated en route by indirect deposition of halogenated precursors through a heated reactive tube, where the dehalogenation reaction proceeds. Here, we use the ditopic 6,11-diiodo-1,2,3,4-tetraphenyltriphenylene (DITTP) precursor that afforded chevron-like GNR on Au(111) via the usual two-staged reaction comprised of monomer-coupling into covalent polymers and subsequent formation of an extended GNR by intramolecular cyclodehydrogenation (CDH). As a model system for inert surfaces, we use Ag(111) passivated with a closed monolayer of chemisorbed iodine that behaves in an inert manner with respect to dehalogenation reactions and facilitates the progressive coupling of radicals into extended covalent structures. We deposit the DITTP-derived biradicals onto both iodine-passivated and pristine Ag(111) surfaces. While on the passivated surface, we directly observe the formation of covalent polymers, on pristine Ag(111) organometallic intermediates emerge instead. This has decisive consequences for the further progression of the reaction: heating the organometallic chain directly on Ag(111) results in complete desorption, whereas the covalent polymer on iodine-passivated Ag(111) can be transformed into the GNR. Yet, the respective CDH proceeds directly on Ag(111) after thermal desorption of the iodine passivation. Accordingly, future work is aimed at the further development of approaches for the complete synthesis of GNR on inert surfaces.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3