Investigation of SiO2 Nanoparticle Retention in Flow Channels, Its Remediation Using Surfactants and Relevance of Artificial Intelligence in the Future

Author:

Bajpai SushantORCID,Shreyash Nehil,Sonker Muskan,Tiwary Saurabh KrORCID,Biswas SushamORCID

Abstract

In this study, the effect of these variables on commercial silica NP retention was presented in a fabricated flow model considering only the physical adsorption aspects of silica NP retention. From our observations, it was established that while silica NP concentration, flow rate and salt are key variables in influencing silica NP agglomeration and retention, the effect of temperature was highly subdued. The effect of salt-induced agglomeration was particularly severe at moderate salinity (≈4 wt% NaCl). To mitigate the effect of salt-induced agglomeration, a commonly used anionic surfactant, sodium dodecyl sulfate (SDS) was added to the solution and the silica NP retention was tabulated. An amount of 0.3 wt% SDS was found to negate salt-induced agglomeration significantly, paving the way for use of silica NP solutions, even in the presence of saline conditions. A section on the prospective use of artificial intelligence for this purpose has been included. This study is useful for understanding NP retention behaviour, especially in the presence of salinity and its mitigation using surfactants, in flow applications.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3