Platform Chemicals from Ethylene Glycol and Isobutene: Thermodynamics “Pays” for Biomass Valorisation and Acquires “Cashback”

Author:

Verevkin Sergey P.12ORCID,Zhabina Aleksandra A.3

Affiliation:

1. Competence Centre CALOR, Department Life, Light & Matter, Faculty of Interdisciplinary Research, University of Rostock, 18059 Rostock, Germany

2. Department of Physical Chemistry, Kazan Federal University, 420008 Kazan, Russia

3. Chemical Department, Samara State Technical University, 443100 Samara, Russia

Abstract

Ethylene glycol (EG) produced from biomass is a promising candidate for several new applications. In this paper, EG derivatives such as mono- and di-tert-butyl ethers are considered. However, accurate thermodynamic data are essential to optimise the technology of the direct tert-butyl ether EG synthesis reaction or reverse process isobutene release. The aim of this work is to measure the vapour pressures and combustion energies for these ethers and determine the vaporisation enthalpies and enthalpies of formation from these measurements. Methods based on the First and Second Law of Thermodynamics were combined to discover the reliable thermodynamics of ether synthesis reactions. The thermochemical data for ethylene glycol tert-butyl ethers were validated using structure–property correlations and quantum chemical calculations. The literature results of the equilibrium study of alkylation of EG with isobutene were evaluated and the thermodynamic functions of ethylene glycol tert-butyl ethers were derived. The energetics of alkylation determined according to the “First Law” and the “Second Law” methods agree very well. Some interesting aspects related to the entropy of ethylene glycol tert-butyl ethers were also revealed and discussed.

Funder

DFG

Deutsche Akademische Austausch Dienst

Kazan Federal University Strategic Academic Leadership Program

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3