Abstract
Three 2,1,3-benzothiadiazole-based ligands decorated with two pyridyl groups, 4,7-di(2-pyridyl)-2,1,3-benzothiadiazol (2-PyBTD), 4,7-di(3-pyridyl)-2,1,3-benzothiadiazol (3-PyBTD) and 4,7-di(4-pyridyl)-2,1,3 benzothiadiazol (4-PyBTD), generate ZnII and AgI complexes with a rich structural variety: [Zn(hfac)2(2-PyBTD)] 1, [Zn2(hfac)4(2-PyBTD)] 2, [Ag(CF3SO3)(2-PyBTD)]23, [Ag(2-PyBTD)]2(SbF6)24, [Ag2(NO3)2(2-PyBTD)(CH3CN)] 5, [Zn(hfac)2(3-PyBTD)] 6, [Zn(hfac)2(4-PyBTD)] 7, [ZnCl2(4-PyBTD)2] 8 and [ZnCl2(4-PyBTD)] 9 (hfac = hexafluoroacetylacetonato). The nature of the resulting complexes (discrete species or coordination polymers) is influenced by the relative position of the pyridyl nitrogen atoms, the nature of the starting metal precursors, as well as by the synthetic conditions. Compounds 1 and 8 are mononuclear and 2, 3 and 4 are binuclear species. Compounds 6, 7 and 9 are 1D coordination polymers, while compound 5 is a 2D coordination polymer, the metal ions being bridged by 2-PyBTD and nitrato ligands. The solid-state architectures are sustained by intermolecular π–π stacking interactions established between the pyridyl group and the benzene ring from the benzothiadiazol moiety. Compounds 1, 2, 7–9 show luminescence in the visible range. Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) calculations have been performed on the ZnII complexes 1 and 2 in order to disclose the nature of the electronic transitions and to have an insight on the modulation of the photophysical properties upon complexation.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献