Topological Analysis of Magnetically Induced Current Densities in Strong Magnetic Fields Using Stagnation Graphs

Author:

Irons Tom J. P.ORCID,Garner AdamORCID,Teale Andrew M.ORCID

Abstract

Stagnation graphs provide a useful tool to analyze the main topological features of the often complicated vector field associated with magnetically induced currents. Previously, these graphs have been constructed using response quantities appropriate for modest applied magnetic fields. We present an implementation capable of producing these graphs in arbitrarily strong magnetic fields, using current-density-functional theory. This enables us to study how the topology of the current vector field changes with the strength and orientation of the applied magnetic field. Applications to CH4, C2H2 and C2H4 are presented. In each case, we consider molecular geometries optimized in the presence of the magnetic field. The stagnation graphs reveal subtle changes to this vector field where the symmetry of the molecule remains constant. However, when the electronic state and symmetry of the corresponding equilibrium geometry changes with increasing field strength, the changes to the stagnation graph are extensive. We expect that the approach presented here will be helpful in interpreting changes in molecular structure and bonding in the strong-field regime.

Funder

European Research Council

Publisher

MDPI AG

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3