Socioeconomic Appraisal of an Early Prevention System against Toxic Conditions in Mussel Aquaculture

Author:

Ragkos AthanasiosORCID,Skordos Dimitrios,Koutouzidou GeorgiaORCID,Giantsis Ioannis A.ORCID,Delis GeorgiosORCID,Theodoridis AlexandrosORCID

Abstract

This paper examines the financial viability and potential socioeconomic effects of introducing and operating an automated, remote-controlled management system for mussel farms which uses probes of temperature, dissolved oxygen, and conductivity associated with prediction software to demonstrate the potential need for mussel movement between marine areas. This system provides an early warning to farmers regarding the presence of toxins in aquatic ecosystems, thus contributing to saving mussel production and avoidikng significant economic losses. The analysis combines two established methodological tools in agricultural economics (linear programming and cost-benefit analysis) and provides estimates of the Net Present Value of the investment under two scenarios—one reflecting the existing situation and one a possible future situation where the mussel production system is expanded. The results of the analysis reveal the mid- and long-term effects of using the automated system, both of which demonstrate that the system is economically viable even if it contributes to saving mussel production from toxicity occurrence for only one year during its period of operation. The annual gross margin in the first scenario was €386,069 but almost tripled in the second scenario (€1,154,649). In addition, the future development and expansion of the mussel sector will likely be based on larger farms with an entrepreneurial and exporting orientation where risk mitigation systems, such as the one appraised in this paper, can play an important role.

Funder

General Secretariat for Research and Technology

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference26 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Resilient and Sustainable Farm Profiles in Small Ruminant Production Systems Using Mathematical Programming Model;Sustainability;2023-07-25

2. A Hybrid Particle Swarm Algorithm for Financial Risk Early Warning Optimization;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

3. A Novel Method of Enterprise Financial Early Warning Based on Wavelet Chaos Algorithm;Cyber Security Intelligence and Analytics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3