Mechanism of Terrestrial Plant Community Assembly under Different Intensities of Anthropogenic Disturbance in Dianchi Lakeside

Author:

Liu Zhen-Dian1,Zhou Xiong-Li1,Tian Jian-Juan1,Yang Liu1,Wang Yue-Hua1,Shen Shi-Kang1ORCID

Affiliation:

1. Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China

Abstract

A lakeside is a functional transition zone that connects the lake aquatic ecosystem and the land ecosystem. Understanding the community assembly mechanism is crucial for regional ecological restoration, habitat management, and biodiversity conservation. However, research on the terrestrial plant community assembly in lakesides under anthropogenic disturbance is still lacking. The present study used phylogeny and functional traits to assess the community assembly of three habitat types with different anthropogenic disturbances in Dianchi lakeside. The factors that influenced the community assembly were also explored. Results indicated that the phylogenetic signals of all the examined functional traits of the dominant species were weak, suggesting that the traits were convergent. The community phylogenetic and functional structures of the different habitat types showed random patterns. Thus, the assembly of terrestrial plant communities in the three habitat types was driven by competitive exclusion and neutral processes in Dianchi lakeside. The trait trade-off strategies of species in the different habitats varied with the different habitat types. Anthropogenic disturbance played an important role in the process of community assembly. The present study provides a scientific basis for the assessment and management of ecological restoration in Dianchi lakeside and other plateau lakes and enriches the knowledge on the community assembly mechanism of disturbed plant communities.

Funder

National Natural Science Foundation of China

Special project for social development of Yunnan province

the Program for Excellent Young Talents, Yunnan University

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3