Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning

Author:

Isabona JosephORCID,Imoize Agbotiname LuckyORCID,Kim Yongsung

Abstract

Over the past couple of decades, many telecommunication industries have passed through the different facets of the digital revolution by integrating artificial intelligence (AI) techniques into the way they run and define their processes. Relevant data acquisition, analysis, harnessing, and mining are now fully considered vital drivers for business growth in these industries. Machine learning, a subset of artificial intelligence (AI), can assist, particularly in learning patterns in big data chunks, intelligent extrapolative extraction of data and automatic decision-making in predictive learning. Firstly, in this paper, a detailed performance benchmarking of adaptive learning capacities of different key machine-learning-based regression models is provided for extrapolative analysis of throughput data acquired at the different user communication distances to the gNodeB transmitter in 5G new radio networks. Secondly, a random forest (RF)-based machine learning model combined with a least-squares boosting algorithm and Bayesian hyperparameter tuning method for further extrapolative analysis of the acquired throughput data is proposed. The proposed model is herein referred to as the RF-LS-BPT method. While the least-squares boosting algorithm is engaged to turn the possible RF weak learners to form stronger ones, resulting in a single strong prediction model, the Bayesian hyperparameter tuning automatically determines the best RF hyperparameter values, thereby enabling the proposed RF-LS-BPT model to obtain desired optimal prediction performance. The application of the proposed RF-LS-BPT method showed superior prediction accuracy over the ordinary random forest model and six other machine-learning-based regression models on the acquired throughput data. The coefficient of determination (Rsq) and mean absolute error (MAE) values obtained for the throughput prediction at different user locations using the proposed RF-LS-BPT method range from 0.9800 to 0.9999 and 0.42 to 4.24, respectively. The standard RF models attained 0.9644 to 0.9944 Rsq and 5.47 to 12.56 MAE values. The improved throughput prediction accuracy of the proposed RF-LS-BPT method demonstrates the significance of hyperparameter tuning/optimization in developing precise and reliable machine-learning-based regression models. The projected model would find valuable applications in throughput estimation and modeling in 5G and beyond 5G wireless communication systems.

Funder

National Research Foundation of Korea

German Academic Exchange Service

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3