Interaction Mechanism of Flavonoids and α-Glucosidase: Experimental and Molecular Modelling Studies

Author:

He ,Liu ,Jiang ,Geng ,Ma ,Liu

Abstract

Flavonoids are known to play a role in hypoglycemia by inhibiting α-glucosidase. However, their interaction mechanism with α-glucosidase still needs to be elaborated. In this study, the α-glucosidase inhibitory activities of 15 flavonoids were investigated. Their molecular volume had a negative effect on inhibitory activity, while the number of phenolic hydroxyl groups on the B ring was positively correlated with inhibitory activity. To explain the significant differences in activity, the interaction behaviors of myricetin and dihydromyricetin, which have similar structures, were compared by spectrofluorimetry, molecular docking, and the independent gradient model (IGM). In the fluorescence analysis, myricetin exhibited a higher binding capacity. Based on molecular docking and IGM analysis, their non-covalent interactions with α-glucosidase could be visualized and quantified. It was found that they had different binding modes with the enzymes and that myricetin possessed stronger hydrogen bonding and van der Waals force interactions, which explained the thermodynamic results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3