Silicone-Textile Composite Resistive Strain Sensors for Human Motion-Related Parameters

Author:

Di Tocco JoshuaORCID,Lo Presti DanielaORCID,Rainer AlbertoORCID,Schena EmilianoORCID,Massaroni CarloORCID

Abstract

In recent years, soft and flexible strain sensors have found application in wearable devices for monitoring human motion and physiological parameters. Conductive textile-based sensors are good candidates for developing these sensors. However, their robust electro-mechanical connection and susceptibility to environmental factors are still an open challenge to date. In this work, the manufacturing process of a silicone-textile composite resistive strain sensor based on a conductive resistive textile encapsulated into a dual-layer of silicone rubber is reported. In the working range typical of biomedical applications (up to 50%), the proposed flexible, skin-safe and moisture resistant strain sensor exhibited high sensitivity (gauge factor of −1.1), low hysteresis (maximum hysteresis error 3.2%) and ease of shaping in custom designs through a facile manufacturing process. To test the developed flexible sensor, two applicative scenarios covering the whole working range have been considered: the recording of the chest wall expansion during respiratory activity and the capture of the elbow flexion/extension movements.

Funder

Fondazione Giovan Battista Baroni

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3