Birthweight Range Prediction and Classification: A Machine Learning-Based Sustainable Approach

Author:

Alabbad Dina A.1,Ajibi Shahad Y.1,Alotaibi Raghad B.1,Alsqer Noura K.1,Alqahtani Rahaf A.1,Felemban Noor M.1,Rahman Atta2ORCID,Aljameel Sumayh S.2ORCID,Ahmed Mohammed Imran Basheer1ORCID,Youldash Mustafa M.1ORCID

Affiliation:

1. Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

2. Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

Abstract

An accurate prediction of fetal birth weight is crucial in ensuring safe delivery without health complications for the mother and baby. The uncertainty surrounding the fetus’s birth situation, including its weight range, can lead to significant risks for both mother and baby. As there is a standard birth weight range, if the fetus exceeds or falls below this range, it can result in considerable health problems. Although ultrasound imaging is commonly used to predict fetal weight, it does not always provide accurate readings, which may lead to unnecessary decisions such as early delivery and cesarian section. Besides that, no supporting system is available to predict the weight range in Saudi Arabia. Therefore, leveraging the available technologies to build a system that can serve as a second opinion for doctors and health professionals is essential. Machine learning (ML) offers significant advantages to numerous fields and can address various issues. As such, this study aims to utilize ML techniques to build a predictive model to predict the birthweight range of infants into low, normal, or high. For this purpose, two datasets were used: one from King Fahd University Hospital (KFHU), Saudi Arabia, and another publicly available dataset from the Institute of Electrical and Electronics Engineers (IEEE) data port. KFUH’s best result was obtained with the Extra Trees model, achieving an accuracy, precision, recall, and F1-score of 98%, with a specificity of 99%. On the other hand, using the Random Forest model, the IEEE dataset attained an accuracy, precision, recall, and F1-score of 96%, respectively, with a specificity of 98%. These results suggest that the proposed ML system can provide reliable predictions, which could be of significant value for doctors and health professionals in Saudi Arabia.

Publisher

MDPI AG

Reference46 articles.

1. Segni, M. (2023, April 25). Disorders of the Thyroid Gland in Infancy, Childhood and Adolescence. Endotext, March 2017. [Online], Available online: https://www.ncbi.nlm.nih.gov/books/NBK279032/.

2. (2023, April 25). Maternal Mortality. Available online: https://www.who.int/news-room/fact-sheets/detail/maternal-mortality.

3. (2023, April 25). Newborn Health. Available online: https://www.who.int/teams/maternal-newborn-child-adolescent-health-and-ageing/newborn-health/preterm-and-low-birth-weight/.

4. (2023, April 25). Saudi Arabia (SAU)-Demographics, Health & Infant Mortality-UNICEF DATA. Available online: https://data.unicef.org/country/sau/.

5. (2023, April 25). UN Yearbook. Available online: https://www.unmultimedia.org/yearbook/page.jsp?volume=1984&bookpage=1228.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3