Cross-Validation Visualized: A Narrative Guide to Advanced Methods

Author:

Allgaier Johannes12ORCID,Pryss Rüdiger12ORCID

Affiliation:

1. Institute of Medical Data Science, University Hospital Würzburg, 97080 Würzburg, Germany

2. Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany

Abstract

This study delves into the multifaceted nature of cross-validation (CV) techniques in machine learning model evaluation and selection, underscoring the challenge of choosing the most appropriate method due to the plethora of available variants. It aims to clarify and standardize terminology such as sets, groups, folds, and samples pivotal in the CV domain, and introduces an exhaustive compilation of advanced CV methods like leave-one-out, leave-p-out, Monte Carlo, grouped, stratified, and time-split CV within a hold-out CV framework. Through graphical representations, the paper enhances the comprehension of these methodologies, facilitating more informed decision making for practitioners. It further explores the synergy between different CV strategies and advocates for a unified approach to reporting model performance by consolidating essential metrics. The paper culminates in a comprehensive overview of the CV techniques discussed, illustrated with practical examples, offering valuable insights for both novice and experienced researchers in the field.

Funder

University of Würzburg

Publisher

MDPI AG

Reference20 articles.

1. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R. (2000). CRISP-DM 1.0: Step-by-Step Data Mining Guide, SPSS Inc.

2. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning, Springer.

3. Hart, P.E., Stork, D.G., and Duda, R.O. (2000). Pattern Classification, Wiley.

4. Cross-Validation;Berrar;Encycl. Bioinform. Comput. Biol.,2019

5. The problem of overfitting;Hawkins;J. Chem. Inf. Comput. Sci.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3