Categorical Data Clustering: A Bibliometric Analysis and Taxonomy

Author:

Cendana Maya1ORCID,Kuo Ren-Jieh1

Affiliation:

1. Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Kee-Lung Road, Taipei 106, Taiwan

Abstract

Numerous real-world applications apply categorical data clustering to find hidden patterns in the data. The K-modes-based algorithm is a popular algorithm for solving common issues in categorical data, from outlier and noise sensitivity to local optima, utilizing metaheuristic methods. Many studies have focused on increasing clustering performance, with new methods now outperforming the traditional K-modes algorithm. It is important to investigate this evolution to help scholars understand how the existing algorithms overcome the common issues of categorical data. Using a research-area-based bibliometric analysis, this study retrieved articles from the Web of Science (WoS) Core Collection published between 2014 and 2023. This study presents a deep analysis of 64 articles to develop a new taxonomy of categorical data clustering algorithms. This study also discusses the potential challenges and opportunities in possible alternative solutions to categorical data clustering.

Publisher

MDPI AG

Reference225 articles.

1. Customer segmentation and profiling for life insurance using k-modes clustering and decision tree classifier;Arifin;Int. J. Adv. Comput. Sc.,2021

2. Application of metaheuristic based fuzzy k-modes algorithm to supplier clustering;Kuo;Comput. Ind. Eng.,2018

3. Hendricks, R., and Khasawneh, M. (2021). Cluster analysis of categorical variables of parkinson’s disease patients. Brain Sci., 11.

4. Clustering by phenotype and genome-wide association study in autism;Narita;Transl. Psychiat,2020

5. Face extraction from image based on k-means clustering algorithms;Farhang;Int. J. Adv. Comput. Sc.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3