Rapid Vegetation Growth due to Shifts in Climate from Slow to Sustained Warming over Terrestrial Ecosystems in China from 1980 to 2018

Author:

Zhang Yuxin123,Wang Junbang1ORCID,Watson Alan E.4ORCID

Affiliation:

1. National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China

3. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

4. USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA

Abstract

The fraction of absorbed photosynthetically active radiation (FPAR) is a key biophysiological parameter of terrestrial ecosystems. However, due to a lack of data with adequate spatial resolution and in long enough time series, there have been limitations in exploring the spatiotemporal changes of vegetation and response to climate change. In this study, a 1 km spatial resolution and 8-day period length dataset (FPARANN) was developed covering the years 1980 to 2018 and evaluated on spatiotemporal change consistency by validating with Gross Primary Production (GPP) observations from the Chinese Flux Observation and Research Network (ChinaFLUX), and comparison with other FPAR products. FPARANN provided a comparable performance in capturing seasonal change observed through GPP, according to the coefficient of determination (R2): 0.50, 0.51, 0.70 and 0.74 averaged for all sites, forest sites, grassland sites and cropland flux sites, respectively. The new data had more spatial similarity to the MODIS FPAR product (FPARMCD15A2) with a greater R2 (0.77) and a lower RMSE (0.12) than other products. With a newly developed dataset, combined with FPARANN (1980–2003) and FPARMCD15A2 (2004–2018), an overall increasing trend in FPAR was found for over 81% of the vegetated area of China from 1980 to 2018. FPAR increased more rapidly for over 83.7% of the area in the 2010s, and at a slower pace for over 62.1% of the area in the early 2000s, which was attributed to a decadal shifting of climate change. This study implies the new dataset is useful in quantifying vegetation changes and would be an important data source for future study of the carbon cycle, soil erosion, or evapotranspiration, with great application potential.

Funder

National Natural Science Foundation of China

Joint Research Project of the People’s Government of Qinghai Province and Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3