Contrastive Self-Supervised Two-Domain Residual Attention Network with Random Augmentation Pool for Hyperspectral Change Detection
Author:
Affiliation:
1. Aerospace Information Research Institute, Chinese Academy of Sciences, No. 20 Datun Road, Beijing 100101, China
2. University of Chinese Academy of Sciences, No. 3 Datun Road, Beijing 100101, China
Abstract
Funder
National Key Research and Development Projects
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
MDPI AG
Subject
General Earth and Planetary Sciences
Link
https://www.mdpi.com/2072-4292/15/15/3739/pdf
Reference40 articles.
1. Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art;Ghamisi;IEEE Geosci. Remote Sens. Mag.,2017
2. A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges;Liu;IEEE Geosci. Remote Sens. Mag.,2019
3. Du, P., Liu, S., Bruzzone, L., and Bovolo, F. (2012, January 22–27). Target-Driven Change Detection Based on Data Transformation and Similarity Measures. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany.
4. Direction-Dominated Change Vector Analysis for Forest Change Detection;Xiao;Int. J. Appl. Earth Obs. Geoinf.,2021
5. Washaya, P., Balz, T., and Mohamadi, B. (2018). Coherence Change-Detection with Sentinel-1 for Natural and Anthropogenic Disaster Monitoring in Urban Areas. Remote Sens., 10.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A No-Reference Quality Assessment Method for Hyperspectral Sharpened Images via Benford’s Law;Remote Sensing;2024-03-27
2. A Hyperspectral Change Detection (HCD-Net) Framework Based on Double Stream Convolutional Neural Networks and an Attention Module;Remote Sensing;2024-02-28
3. Local-Specificity and Wide-View Attention Network With Hard Sample Aware Contrastive Loss for Street Scene Change Detection;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3