TerraSAR-X and GNSS Data for Deformation Detection and Mechanism Analysis of a Deep Excavation Channel Section of the China South–North Water-Diversion Project

Author:

Hu Qingfeng1,Kou Yingchao1,Liu Jinping12ORCID,Liu Wenkai1,Yang Jiuyuan1,Li Shiming1ORCID,He Peipei1,Liu Xianlin13,Ma Kaifeng1,Li Yifan1,Wang Peng1,Lu Weiqiang1,Hai Hongxin1

Affiliation:

1. College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. Hydraulics and Geotechnics Section, KU Leuven, Kasteelpark Arenberg 40, BE-3001 Leuven, Belgium

3. Chinese Academy of Engineering, Beijing 100088, China

Abstract

Due to expansive soils and high slopes, the deep excavated channel section of the China South–North Water-Diversion Middle-Route Project has a certain risk of landslide disaster. Therefore, examining the deformation law and mechanism of the channel slope in the middle-route section of the project is an extreme necessity for safe operation. However, the outdated monitoring method limits research on the surface deformation law and mechanism of the entire deep excavation channel section. For these reasons, we introduced a novel approach that combines SBAS-InSAR and GNSS, enabling the surface domain monitoring of the study area at a regional scale as well as real-time monitoring of specific target regions. By using SBAS-InSAR technology and leveraging 11-view high-resolution TerraSAR-X data, we revealed the spatiotemporal evolution law of surface deformations in the channel slopes within the study area. The results demonstrate that the predominant deformation in the study area was uplifted, with limited evidence of subsidence deformation. Moreover, there is a distinct region of significant uplift deformation, with the highest annual uplift rate reaching 19 mm/y. Incorporating GNSS and soil-moisture-monitoring timeseries data, we conducted a study on the correlation between soil moisture and the three-dimensional deformation of the ground surface, revealing a positive correlation between the soil moisture content and vertical displacement of the channel slope. Furthermore, combining field investigations on surface uplift deformation characteristics, we identified that the main cause of surface deformation in the study area was attributed to the expansion of the soil due to water absorption in expansive soils. The research results not only revealed the spatiotemporal evolution law and mechanism of the channel slope deformation in the studied section of the deep excavation channel but also provide successful guidance for the prevention and control of channel slope-deformation disasters in the study area. Furthermore, they offer effective technical means for the safe monitoring of the entire South–North Water-Diversion Middle-Route Project and similar long-distance water-conveyance canal projects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3