YOLOv7-MA: Improved YOLOv7-Based Wheat Head Detection and Counting

Author:

Meng Xiaopeng1,Li Changchun1,Li Jingbo1,Li Xinyan1,Guo Fuchen1,Xiao Zhen1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

Detection and counting of wheat heads are crucial for wheat yield estimation. To address the issues of overlapping and small volumes of wheat heads on complex backgrounds, this paper proposes the YOLOv7-MA model. By introducing micro-scale detection layers and the convolutional block attention module, the model enhances the target information of wheat heads and weakens the background information, thereby strengthening its ability to detect small wheat heads and improving the detection performance. Experimental results indicate that after being trained and tested on the Global Wheat Head Dataset 2021, the YOLOv7-MA model achieves a mean average precision (MAP) of 93.86% with a detection speed of 35.93 frames per second (FPS), outperforming Faster-RCNN, YOLOv5, YOLOX, and YOLOv7 models. Meanwhile, when tested under the three conditions of low illumination, blur, and occlusion, the coefficient of determination (R2) of YOLOv7-MA is respectively 0.9895, 0.9872, and 0.9882, and the correlation between the predicted wheat head number and the manual counting result is stronger than others. In addition, when the YOLOv7-MA model is transferred to field-collected wheat head datasets, it maintains high performance with MAP in maturity and filling stages of 93.33% and 93.03%, respectively, and R2 values of 0.9632 and 0.9155, respectively, demonstrating better performance in the maturity stage. Overall, YOLOv7-MA has achieved accurate identification and counting of wheat heads in complex field backgrounds. In the future, its application with unmanned aerial vehicles (UAVs) can provide technical support for large-scale wheat yield estimation in the field.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3