Comparison of Data Fusion Methods in Fusing Satellite Products and Model Simulations for Estimating Soil Moisture on Semi-Arid Grasslands

Author:

Zhu Yi1,Zhang Lanhui1ORCID,Li Feng1,Xu Jiaxin1,He Chansheng12ORCID

Affiliation:

1. Key Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

2. Department of Geography, Environment, and Tourism, Western Michigan University, Kalamazoo, MI 49008, USA

Abstract

In arid and semi-arid areas, soil moisture (SM) plays a crucial role in land-atmosphere interactions, hydrological processes, and ecosystem sustainability. SM data at large scales are critical for related climatic, hydrological, and ecohydrological research. Data fusion based on satellite products and model simulations is an important way to obtain SM data at large scales; however, little has been reported on the comparison of the data fusion methods in different categories. Here, we compared the performance of two widely used data fusion methods, the Ensemble Kalman Filter (EnKF) and the Back-Propagation Artificial Neural Network (BPANN), in the degraded grassland site (DGS) and the alpine grassland site (AGS). The SM data from the Community Land Model 5.0 (CLM5.0) and the Soil Moisture Active and Passive (SMAP) were fused and validated against the observations of the Cosmic-Ray Neutron Sensor (CRNS) to avoid the impacts of scale-mismatch. Results show that compared with the original data sets at both sites, the RMSE of the fused data by BPANN (FD-BPANN) and EnKF (FD-EnKF) had improved by more than 50% and 31%, respectively. Overall, the FD-BPANN performs better than the FD-EnKF because the BPANN method assigned higher weights to input data with better performance and the EnKF method is affected by the strong variabilities of both the fused CLM5.0 and SMAP data and the CRNS data. However, in terms of the percentile range, the FD-BPANN showed the worst performance, with overestimations in the low SM range of 25th percentile (<Q25), because the BPANN method tends to be trapped in a local minimum. The BPANN method performed better in humid areas, then followed by semi-humid areas, and finally arid and semi-arid areas. Moreover, compared with the previous studies in arid and semi-arid areas, the BPANN method in this study performed better.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3