An Efficient Object Detection Algorithm Based on Improved YOLOv5 for High-Spatial-Resolution Remote Sensing Images

Author:

Cao Feng1,Xing Bing1,Luo Jiancheng2,Li Deyu1,Qian Yuhua1,Zhang Chao1ORCID,Bai Hexiang1,Zhang Hu1

Affiliation:

1. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

2. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Abstract

The field of remote sensing information processing places significant research emphasis on object detection (OD) in high-spatial-resolution remote sensing images (HSRIs). The OD task in HSRIs poses additional challenges compared to conventional natural images. These challenges include variations in object scales, complex backgrounds, dense arrangement, and uncertain orientations. These factors contribute to the increased difficulty of OD in HSRIs as compared to conventional images. To tackle the aforementioned challenges, this paper introduces an innovative OD algorithm that builds upon enhancements made to the YOLOv5 framework. The incorporation of RepConv, Transformer Encoder, and BiFPN modules into the original YOLOv5 network leads to improved detection accuracy, particularly for objects of varying scales. The C3GAM module is designed by introducing the GAM attention mechanism to address the interference caused by complex background regions. To achieve precise localization of densely arranged objects, the SIoU loss function is integrated into YOLOv5. The circular smooth label method is used to detect objects with uncertain directions. The effectiveness of the suggested algorithm is confirmed through its application to two commonly utilized datasets, specifically HRSC2016 and UCAS-AOD. The average detection accuracies achieved on these datasets are 90.29% and 90.06% respectively, surpassing the performance of other compared OD algorithms for HSRIs.

Funder

Natural Science Foundation of China

Special Fund for Science and Technology Innovation Teams of Shanxi

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3