UCDnet: Double U-Shaped Segmentation Network Cascade Centroid Map Prediction for Infrared Weak Small Target Detection

Author:

Xu Xiangdong12,Wang Jiarong1,Zhu Ming1,Sun Haijiang1,Wu Zhenyuan12,Wang Yao12,Cao Shenyi3,Liu Sanzai12

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710000, China

Abstract

In recent years, the development of deep learning has brought great convenience to the work of target detection, semantic segmentation, and object recognition. In the field of infrared weak small target detection (e.g., surveillance and reconnaissance), it is not only necessary to accurately detect targets but also to perform precise segmentation and sub-pixel-level centroid localization for infrared small targets with low signal-to-noise ratio and weak texture information. To address these issues, we propose UCDnet (Double U-shaped Segmentation Network Cascade Centroid Map Prediction for Infrared Weak Small Target Detection) in this paper, which completes “end-to-end” training and prediction by cascading the centroid localization subnet with the semantic segmentation subnet. We propose the novel double U-shaped feature extraction network for point target fine segmentation. We propose the concept and method of centroid map prediction for point target localization and design the corresponding Com loss function, together with a new centroid localization evaluation metrics. The experiments show that ours achieves target detection, semantic segmentation, and sub-pixel-level centroid localization. When the target signal-to-noise ratio is greater than 0.4, the IoU of our semantic segmentation results can reach 0.9186, and the average centroid localization precision can reach 0.3371 pixels. On our simulated dataset of infrared weak small targets, the algorithm we proposed performs better than existing state-of-the-art networks in terms of semantic segmentation and centroid localization.

Funder

Science and Technology Department of Jilin Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3