Urban Treetop Detection and Tree-Height Estimation from Unmanned-Aerial-Vehicle Images

Author:

Wu Hui1,Zhuang Minghao1,Chen Yuanchi2,Meng Chen3,Wu Caiyan14,Ouyang Linke5,Liu Yuhan3,Shu Yi6,Tao Yuzhong6,Qiu Tong7ORCID,Li Junxiang1ORCID

Affiliation:

1. School of Design, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Communication & Information Engineering, Shanghai University, Shanghai 200444, China

3. School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China

4. Department of Geography, Humboldt-Universität zu Berlin, Rudower Chaussee 16, 12489 Berlin, Germany

5. Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China

6. Department of Energy and Environmental Protection, Bao Iron & Steel Co., Ltd., Shanghai 201900, China

7. Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA

Abstract

Individual tree detection for urban forests in subtropical environments remains a great challenge due to the various types of forest structures, high canopy closures, and the mixture of evergreen and deciduous broadleaved trees. Existing treetop detection methods based on the canopy-height model (CHM) from UAV images cannot resolve commission errors in heterogeneous urban forests with multiple trunks or strong lateral branches. In this study, we improved the traditional local-maximum (LM) algorithm using a dual Gaussian filter, variable window size, and local normalized correlation coefficient (NCC). Specifically, we adapted a crown model of maximum/minimum tree-crown radii and an angle strategy to detect treetops. We then removed and merged the pending tree vertices. Our results showed that our improved LM algorithm had an average user accuracy (UA) of 87.3% (SD± 4.6), an average producer accuracy (PA) of 82.8% (SD± 4.1), and an overall accuracy of 93.3% (SD± 3.9) for sample plots with canopy closures less than 0.5. As for the sample plots with canopy closures from 0.5 to 1, the accuracies were 78.6% (SD± 31.5), 73.8% (SD± 10.3), and 68.1% (SD± 12.7), respectively. The tree-height estimation accuracy reached more than 0.96, with an average RMSE of 0.61 m. Our results show that the UAV-image-derived CHM can be used to accurately detect individual trees in mixed forests in subtropical cities like Shanghai, China, to provide vital tree-structure parameters for precise and sustainable forest management.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3