Hybrid Threshold Denoising Framework Using Singular Value Decomposition for Side-Channel Analysis Preprocessing

Author:

Wang Yuanzhen1ORCID,Zhang Hongxin23,Fang Xing2ORCID,Cui Xiaotong2,Ning Wenxu1,Wang Danzhi2,Fan Fan4,Shu Lei4ORCID

Affiliation:

1. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. Beijing Microelectronics Technology Institute, Beijing 100076, China

Abstract

The traces used in side-channel analysis are essential to breaking the key of encryption and the signal quality greatly affects the correct rate of key guessing. Therefore, the preprocessing of side-channel traces plays an important role in side-channel analysis. The process of side-channel leakage signal acquisition is usually affected by internal circuit noise, external environmental noise, and other factors, so the collected signal is often mixed with strong noise. In order to extract the feature information of side-channel signals from very low signal-to-noise ratio traces, a hybrid threshold denoising framework using singular value decomposition is proposed for side-channel analysis preprocessing. This framework is based on singular value decomposition and introduces low-rank matrix approximation theory to improve the rank selection methods of singular value decomposition. This paper combines the hard threshold method of truncated singular value decomposition with the soft threshold method of singular value shrinkage damping and proposes a hybrid threshold denoising framework using singular value decomposition for the data preprocessing step of side-channel analysis as a general preprocessing method for non-profiled side-channel analysis. The data used in the experimental evaluation are from the raw traces of the public database of DPA contest V2 and AES_HD. The success rate curve of non-profiled side-channel analysis further confirms the effectiveness of the proposed framework. Moreover, the signal-to-noise ratio of traces is significantly improved after preprocessing, and the correlation with the correct key is also significantly enhanced. Experimental results on DPA v2 and AES_HD show that the proposed noise reduction framework can be effectively applied to the side-channel analysis preprocessing step, and can successfully improve the signal-to-noise ratio of the traces and the attack efficiency.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

BUPT innovation and entrepreneurship support program

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compacting Side-Channel Measurements With Amplitude Peak Location Algorithm;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3