Author:
Bi Zhen,Huang Yong,Zhang Wenjing,Song Ge
Abstract
Fe-dependent nitrate reduction by anammox consortia could serve as a valuable autotrophic denitrification process for wastewater treatment. However, influences of temperature, pH, and Fe/NO3-N ratio on this biochemical process have not been studied. The present study investigated individual and interactive effects of aforementioned parameters on nitrate removal performance and bioactivity of anammox consortia via a series of batch assays. Enzymes activity of nitrate reductase (NAR) and hydrazine dehydrogenase (HDH) of anammox consortia had high consistency with nitrogen removal performance and significantly depended on temperature and Fe/NO3-N ratio, while the narG and hdh genes expression were drastically depressed by extreme temperature. Models developed by response surface methodology (RSM) showed the significance of individual parameter followed by Fe/NO3-N ratio > temperature > pH, while combined effects of temperature versus Fe/NO3-N ratio exerted the most significant impacts. The pH in range of 4.0–8.0 had less influence. The optimum condition for nitrate removal efficiency (NRE) > 90% and total nitrogen removal efficiency (TNRE) > 75% was 4.0–7.4 for pH, 25.5–30.0 °C for temperature, and 31–48 for Fe/NO3-N molar ratio. The maximum NRE and TNRE could be 98.68% and 79.42%, respectively, under the condition of pH = 4.00, temperature = 28.5 °C and Fe/NO3-N ratio = 37.4. The models showed good dependability for simulation nitrogen removal performance by anammox in the real semiconductor wastewater.
Funder
National Natural Science Foundation of China
Suzhou University of Science and Technology
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献