A Study on the Cement Gel Formation Process during the Creation of Nanomodified High-Performance Concrete Based on Nanosilica

Author:

Beskopylny Alexey N.ORCID,Stel’makh Sergey A.ORCID,Shcherban’ Evgenii M.ORCID,Mailyan Levon R.,Meskhi Besarion,Varavka Valery,Beskopylny Nikita,El’shaeva Diana

Abstract

One of the most science-intensive and developing areas is nano-modified concrete. Its characteristics of high-strength, high density, and improved structure, which is not only important at the stage of monitoring their performance, but also at the manufacturing stage, characterize high-performance concrete. The aim of this study is to obtain new theoretical knowledge and experimental-applied dependencies arising from the “composition–microstructure–properties” ratio of high-strength concretes with a nano-modifying additive of the most effective type. The methods of laser granulometry and electron microscopy are applied. The existing concepts from the point of view of theory and practice about the processes of cement gel formation during the creation of nano-modified high-strength concretes with nano-modifying additives are developed. The most rational mode of the nano-modification of high-strength concretes is substantiated as follows: microsilica ground to nanosilica within 12 h. A complex nano-modifier containing nanosilica, superplasticizer, hyperplasticizer, and sodium sulfate was developed. The most effective combination of the four considered factors are: the content of nanosilica is 4% by weight of cement; the content of the superplasticizer additive is 1.4% by weight of cement; the content of the hyperplasticizer additive is 3% by weight of cement; and the water–cement ratio—0.33. The maximum difference of the strength characteristics in comparison with other combinations ranged from 45% to 57%.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference69 articles.

1. Civil Engineering Materials;Islam,2020

2. A Simplified Mechanistic-Empirical Flexible Pavement Design Method for Moderate to Hot Climate Regions

3. Pavement Design and Materials;Papagiannakis,2017

4. Effects of Portland Cement and Polymer Powder on the Properties of Cement-Bound Road Base Mixtures

5. Advances in Materials and Pavement Prediction;Masad,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3