Enhanced Oil Recovery Mechanism and Technical Boundary of Gel Foam Profile Control System for Heterogeneous Reservoirs in Changqing

Author:

Wang Liang-LiangORCID,Wang Teng-Fei,Wang Jie-Xiang,Tian Hai-Tong,Chen Yi,Song Wei

Abstract

The gel plugging and flooding system has a long history of being researched and applied, but the Changqing reservoir geological characteristics are complex, and the synergistic performance of the composite gel foam plugging system is not fully understood, resulting in poor field application. Additionally, the technique boundary chart of the heterogeneous reservoir plugging system has hardly appeared. In this work, reservoir models of porous, fracture, and pore-fracture were constructed, a composite gel foam plugging system was developed, and its static injection and dynamic profile control and oil displacement performance were evaluated. Finally, combined with the experimental studies, a technical boundary chart of plugging systems for heterogeneous reservoirs is proposed. The research results show that the adsorption effect of microspheres (WQ-100) on the surface of elastic gel particles-1 (PEG-1) is more potent than that of pre-crosslinked particle gel (PPG) and the deposition is mainly on the surface of PPG. The adsorption effect of PEG-1 on the surface of PPG is not apparent, primarily manifested as deposition stacking. The gel was synthesized with 0.2% hydrolyzed polyacrylamide (HPAM) + 0.2% organic chromium cross-linking agent, and the strength of enhanced gel with WQ-100 was higher than that of PEG-1 and PPG. The comprehensive value of WQ-100 reinforced foam is greater than that of PEG-1, and PPG reinforced foam, and the enhanced foam with gel has a thick liquid film and poor foaming effect. For the heterogeneous porous reservoir with the permeability of 5/100 mD, the enhanced foam with WQ-100 shows better performance in plugging control and flooding, and the recovery factor increases by 28.05%. The improved foam with gel enhances the fluid flow diversion ability and the recovery factor of fractured reservoirs with fracture widths of 50 μm and 180 μm increases by 29.41% and 24.39%, respectively. For pore-fractured reservoirs with a permeability of 52/167 mD, the PEG + WQ-100 microsphere and enhanced foam with WQ-100 systems show better plugging and recovering performance, and the recovery factor increases are 20.52% and 17.08%, 24.44%, and 21.43%, respectively. The smaller the particle size of the prefabricated gel, the more uniform the adsorption on the foam liquid film and the stronger the stability of the foam system. The plugging performance of the composite gel system is stronger than that of the enhanced gel with foam, but the oil displacement performance of the gel-enhanced foam is better than that of the composite gel system due to the “plug-flooding-integrated” feature of the foam. Combined with the plugging and flooding performance of each plugging system, a technique boundary chart for the plugging system was established for the coexisting porous, fracture, and pore-fracture heterogeneous reservoirs in Changqing Oilfield.

Funder

the Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3