Abstract
In this paper, a fully designed ultrasonic transit time-based gas flow sensor is presented. The proposed sensor has been optimized in terms of accuracy, sensitivity, and power consumption at different design stages: mechanical design of the sensor pipe, piezoelectric transducer configuration and validation over temperature, time of flight detection algorithm, and electronics design. From the optimization and integration of each design part, the final designed gas flow sensor is based on the employment of 200 kHz-piezoelectric transducers mounted in a V-configuration and on the implementation of a cross-correlation algorithm based on the Hilbert Transform for time-of-flight detection purposes. The proposed sensor has been experimentally validated at different flow rates and temperatures, and it fully complies with the accuracy specifications required by the European standard EN14236, placing the proposed design into the state of the art of ultrasonic gas flow sensors regarding cost, accuracy, and power consumption, the latter of which is crucial for implementing smart gas meters that are able to autonomously operate as IoT devices by extending their battery life.
Funder
Regional Government of Andalusia
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Internet of Things and AI-based optimization within Industry 4.0 paradigm;Bulletin of the Polish Academy of Sciences Technical Sciences;2023-09-05