Low-Power Transit Time-Based Gas Flow Sensor with Accuracy Optimization

Author:

García Oya José R.ORCID,Sainz Rojas AlejandroORCID,Narbona Miguel Daniel,González Carvajal RamónORCID,Muñoz Chavero Fernando

Abstract

In this paper, a fully designed ultrasonic transit time-based gas flow sensor is presented. The proposed sensor has been optimized in terms of accuracy, sensitivity, and power consumption at different design stages: mechanical design of the sensor pipe, piezoelectric transducer configuration and validation over temperature, time of flight detection algorithm, and electronics design. From the optimization and integration of each design part, the final designed gas flow sensor is based on the employment of 200 kHz-piezoelectric transducers mounted in a V-configuration and on the implementation of a cross-correlation algorithm based on the Hilbert Transform for time-of-flight detection purposes. The proposed sensor has been experimentally validated at different flow rates and temperatures, and it fully complies with the accuracy specifications required by the European standard EN14236, placing the proposed design into the state of the art of ultrasonic gas flow sensors regarding cost, accuracy, and power consumption, the latter of which is crucial for implementing smart gas meters that are able to autonomously operate as IoT devices by extending their battery life.

Funder

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internet of Things and AI-based optimization within Industry 4.0 paradigm;Bulletin of the Polish Academy of Sciences Technical Sciences;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3