Genetic Effect and Growth Curve Parameter Estimation under Heat Stress in Slow-Growing Thai Native Chickens

Author:

Boonkum Wuttigrai,Duangjinda MonchaiORCID,Kananit Srinuan,Chankitisakul VibuntitaORCID,Kenchaiwong WootichaiORCID

Abstract

Heat stress is becoming a major problem because it limits growth in poultry production, especially in tropical areas. The development of genetic lines of Thai native chickens (TNC) which can tolerate the tropical climate with the least compromise on growth performance is therefore necessary. This research aims to analyze the appropriate growth curve function and to estimate the effect of heat stress on the genetic absolute growth rate (AGR) in TNC and Thai synthetic chickens (TSC). The data comprised 35,355 records for body weight from hatching to slaughtering weight of 7241 TNC and 10,220 records of 2022 TSC. The best-fitting growth curve was investigated from three nonlinear regression models (von Bertalanffy, Gompertz, and logistic) and used to analyze the individual AGR. In addition, a repeatability test-day model on the temperature-humidity index (THI) function was used to estimate the genetic parameters for heat stress. The Gompertz function produced the lowest mean squared error (MSE) and Akaike information criterion (AIC) and highest the pseudo-coefficient of determination (Pseudo-R2) in both chicken breeds. The growth rates in TSC were higher than TNC; the growth rates of males were greater than females, but the age at inflection point in females was lower than in males in both chicken breeds. The THI threshold started at 76. The heritability of the AGR was 0.23 and 0.18 in TNC and TSC, respectively. The additive variance and permanent environmental variance of the heat stress effect increased sharply after the THI of 76. The growth rate decreased more severely in TSC than TNC. In conclusion, the Gompertz function can be applied with the THI to evaluate genetic performance for heat tolerance and increase growth performance in slow-growing chicken.

Funder

The Research Program of Khon Kaen University, Thailand

Publisher

MDPI AG

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3