Drivers of Benthic Macroinvertebrate Assemblages in Equatorial Alpine Rivers of the Rwenzoris (Uganda)

Author:

Musonge Peace S.L.,Boets PieterORCID,Lock Koen,Goethals Peter L.M.

Abstract

The Sub-Saharan alpine freshwater biodiversity is currently impacted by human settlements, climate change, agriculture, and mining activities. Because of the limited biodiversity studies in the region, a better understanding is needed of the important environmental variables affecting macroinvertebrate assemblages. In this paper, macroinvertebrate diversity responses to 18 environmental variables were studied at 30 sites along unique Rwenzori rivers at the equator in Uganda. We hypothesized that anthropogenic disturbance and local environmental variables affect macroinvertebrate diversity, irrespective of altitudinal gradients. Based on altitude and climate, the sites were subdivided into three altitude groups consisting of 10 sites each: upstream (US) 1400–1600 m.a.s.l.; midstream (MS) 1091–1399 m.a.s.l., and downstream (DS) 900–1090 m.a.s.l. A total of 44 macroinvertebrate families and 1623 individuals were identified. The macroinvertebrate diversity patterns were influenced by temperature, altitude, and latitude. Regression analysis revealed that temperature and nickel, were negative predictors of taxa richness. Nickel, which is released by mining activity, is detrimental to aquatic communities in Sub-Saharan alpine ecosystems. Significant longitudinal variation in macroinvertebrate diversity was observed between the sites, which were also affected by mineral and temperature gradients. Our study highlights the need for long-term monitoring in this region to detect and reduce the threats to river biodiversity from anthropogenic activity.

Funder

Schlumberger Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3