Analysis of Dynamic Characteristics and Control Strategies of a Solvent Dehydration Distillation Column in a Purified Terephthalic Acid Plant

Author:

Huang Xiuhui,Wang Jun,Li ZeqiuORCID

Abstract

In this study, a solvent dehydration column of purified terephthalic acid (PTA) plant was used as the research object. Based on a dynamic model of the solvent dehydration column, a dynamic sensitivity analysis of the key parameters was carried out using Aspen Dynamics. After the dynamic model reached stability, the reflux rate, methyl acetate concentration, and reflux temperature of the solvent dehydration column were adjusted and the changes of the key separation indexes under the corresponding disturbance were analyzed. According to the analysis results, a sensitive plate temperature controller was added to carry out the dynamic sensitivity analysis. In addition, the acetic acid (HAc) concentration of the bottom of the column was found to be unstable in the dynamic sensitivity analysis. Considering the HAc concentration controller of the column bottom, two control strategies were designed. By analyzing the dynamic response of the feed flow disturbance under different control strategies, a more suitable control strategy under different conditions was obtained. From this, a reasonable method could be derived to design the control strategy, thereby providing a theoretical basis for further real-time optimization and advanced control of solvent dehydration in a PTA plant.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference36 articles.

1. Multivariable predictive control of PX oxidation reaction process;Xing;CIESC J.,2012

2. Multi-stable study on heterogeneous azeotropic distillation of acetic acid dehydration;Huang;Comput. Appl. Chem.,2010

3. Journal review. Azeotropic distillation

4. Application and research progress of azeotropic distillation in chemical production;Hu;Chem. Ind. Eng. Prog.,2010

5. Dynamic simulation and nonlinear control system design of a heterogeneous azeotropic distillation column

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3