Spatiotemporal Analysis of Future Precipitation Changes in the Huaihe River Basin Based on the NEX-GDDP-CMIP6 Dataset and Monitoring Data

Author:

Tong Min1,Li Leilei1,Li Zhi23ORCID,Tian Zhihui1

Affiliation:

1. School of Earth Science and Technology, Zhengzhou University, Zhengzhou 450000, China

2. China Center for Resources Satellite Data and Application, Beijing 100094, China

3. China Siwei Surveying and Mapping Technology Co., Ltd., Beijing 100086, China

Abstract

This research analyzes extreme precipitation events in the Huaihe River Basin in China, a densely populated region with a history of human settlements and agricultural activities. This study aims to explore the impact of extreme precipitation index changes and provide decision-making suggestions for flood early warning and agricultural development in the Huaihe River Basin. The study utilizes the NEX-GDDP-CMIP6 climate model dataset and daily value dataset (V3.0) from China’s national surface weather stations to investigate temporal and spatial changes in the extreme precipitation indices from 1960 to 2014 and future projections. At the same time, this study adopts the RclimDex model, Taylor diagram, and Sen+Mann–Kendall trend analysis research methods to analyze the data. The results reveal a slight increase in extreme precipitation indices from the northwest to southeast within the basin, except for the CDD, which shows a decreasing trend. Regarding the spatial variation, the future increase in extreme precipitation in the Huaihe River Basin shows a spatial variation characteristic that decreases from the northwest to southeast. These findings suggest that extreme precipitation events are intensifying in the region. Understanding these trends and their implications is vital for adaptation strategy planning and mitigating the risks associated with extreme precipitation events in the Huaihe River Basin.

Funder

Henan Province Fund

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3